ATHENS2017

Athens, 21-24 June 2017 Recovery of Volatile Fatty Acids from cellulosic sludge to enhance phosphorus bio-uptake or PHA production

A. Cherubin, N. Frison, A. L. Eusebi, <u>F. Fatone</u>

LabICAB

Outline

- The Horizon2020 SMART-Plant Innovation Action
- Cellulose in wastewater and recovery/reuse routes
- Fermentation for Volatile fatty Acids recovery for
 - Biopolymers (PHB-coPHV) production
 - Enhanced BioP recovery
- What comes next: scale-up to demo and full scale in real environment

Supported by the Horizon 2020 Framework Programme of the European Union

It's all about toilet paper?

- ✓ 12 to 18 kg per person per year
- \checkmark 8.5 pieces of paper per visit to the restroom
- ✓ On average, a person spends 43 hours a year on the toilet
- ✓ 70% folds the sheets before using them, 29% make a proper use

Supported by the Horizon 2020 Framework Programme of the European Union

UNIVFR

Facts and figures

Source: www.statista.com

Supported by the Horizon 2020 Framework Programme of the European Union

Not only toilet paper: resources embedded to municipal wastewater

Parameter	Value
Reusable water (m ³ /capita year)	80-120
Cellulose (kg/capita year)	5-7
Biopolymers; PHA (kg/capita year)	2-4
Phosphorus in P precursors (kg/capita year)	0.5-1.5
Nitrogen in N precursors (kg/capita year)	4-5
Methane (m ³ / capita year)	12-13
Organic Fertilizer (P-rich compost) (kg/capita year)	9-10

Verstraete et al. (2009) *Bioresource Technology* 100, 5537–5545 Salehizadej and van Loosdrecht (2004) *Biotechnology Advances* 22, 261–279

Key Enabling Strategy: upstream solid concentration, integration and innovation of the sewage sludge treatment

Supported by the Horizon 2020 Framework Programme of the European Union

UNIVERSITÀ

Scale-up of low-carbon footprint MAterial Recovery Techniques for upgrading existing wastewater treatment Plants

The overall target of SMART-Plant is to validate and to address to the market a portfolio of SMARTechnologies that, singularly or combined, can renovate and upgrade existing wastewater treatment plants and give the added value of instigating the paradigm change towards efficient wastewater-based bio-refineries.

Supported by the Horizon 2020 Framework Programme of the European Union

SMART-Plant Business plan and market deployment strategy

The SMARTechnologies to integrate and renovate existing WWTPs

The SMART-Plant integrated WWTPs

SMARTec	Integrated	Key enabling process(es)	SMART-product(s)	
h n.	municipal WWTP			
1	Geestmerabacht	Upstream dynamic fine-screen	Cellulosic sludge, refined	
	(Netherlands)	and post-processing of cellulosic	clean cellulose	
		sludge		
2a	Karmiel (Israel)	Mainstream polyurethane-based	Biogas, Energy-efficient	
		anaerobic biofilter	water reuse	
2b	Manresa (Spain)	Mainstream SCEPPHAR	P-rich sludge, PHA	
3	Cranfield (UK)	Mainstream tertiary hybrid ion	Nutrients	
		exchange		
4a	Carbonera (Italy)	Sidestream SCENA+conventional	P-rich sludge, VFA	
		AD		
4b	Psyttalia (Greece)	Sidestream SCENA+enhanced AD	P-rich sludge	
5	Carbonera (Italy)	Sidestream SCEPPHAR	PHA, struvite, VFA	

Supported by the Horizon 2020 Framework Programme of the European Union

UNIVERSITÀ

di **VERONA**

Background

- Municipal wastewater contains around 100-120 gCOD/(inhabitant per day), however diluted in 250-350 L/(inhabitant per day);
- Around 50-80% of the suspended solid can be efficiently removed by the dynamic sieving of the wastewater, in which up to 35% is toilet paper (Ruiken et al., 2013, Water Research);
- The sewage sludge is a **challenging feedstock** to be processed for bio-based applications (waste-to-chemicals and bio-product value chain);
- Short-chain Volatile Fatty Acids (SCFAs) are the intermediates for a wide range of applications

Supported by the Horizon 2020 Framework Programme of the European Union

SMARTech1: Primary (upstream) dynamic sieving and clean cellulose recovery

Framework Programme of the European Union

SMART-Plant

POLITECNICA DELLE MARCHE

VERONA

SMARTech1: Primary (upstream) dynamic sieving and clean cellulose recovery

- 79% cellulose fiber,
- 5 % other organics,
- 6% inorganic (ash),
- 10% other contaminants (average in The Netherlands).
 Potentially marketable product, but the economic feasibility depends mainly on savings at the WWTP

Market development

Marketing and valorization of recovered cellulose

- ✓ Reuse in asphalt
- ✓ Raw material for composite
- ✓ Insulation materials (In development, not sure yet)

Supported by the Horizon 2020 Framework Programme of the European Union

Research projects for re-use of cellulose

Supported by the Horizon 2020 Framework Programme of the European Union

UNIVERSITÀ Politecnica Delle Marche

UNIVERSITÀ

di **VERO**

Overview about valorization of cellulosic sludge

Role of propionic acid in the VFA mixture

- To enhance the growth of PAO vs GAO, thus the biological phosphorus removal and recovery
- To increase the content of 3-hydroxyvalerate (3HV), thus the thermoplastic properties of the recovered biopolymer

Supported by the Horizon 2020 Framework Programme of the European Union

Controlled best fermenting conditions based on the sludge type: results of > 90 batch test

Sludge Type	Initial pH	Days (d)	т (°С)	Max VFAs production (mgCOD/gTVS fed)	HPr (%)
Primary Sludge (PS)	5-8	4-5	37	250-270	30-35
Mixed sludge (PS&WAS)	8-9	4-5	37	250-270	25-30
Waste Activated Sludge (WAS)	>9	4-5	37	250-270	10-25
Cellulosic sludge (CS)	7.5-8	5-8	37	300-340	30-33

Supported by the Horizon 2020 Framework Programme of the European Union

UNIVERSITÀ

di **VERC**

Characterization of the semi-continuous fermentation liquid of cellulosic primary sludge

Parameter	Average (±st.dev) (~100 days of operation)
рН	5.5-6.2
Total COD (gCOD/L)	15.9±4.1
Soluble COD (gCOD/L)	14.1±3.3
Volatile Fatty Acids (gCOD/L)	11.2±1.1
% Acetic acid (HAc)	46±4
% Propionic acid (HPr)	40±3
NH ₄ -N (mgN/L)	478±78
PO ₄ -P (mgP/L)	146±12

- 1) The VFAs is around 80% of the soluble COD
- 2) High % of HPr: ratio HPr:HAc ~ 0.9. The production of 3-HV is promoted (Albuquerque, et al. 2007)

3) High concentration of PO₄-P enable the potential recovery of struvite (10- 15 kgStruvite/tonTVSfed)

Supported by the Horizon 2020 Framework Programme of the European Union

Characterization of the anaerobic supernatant

Parameter	Average (Min- Max)
рН	7.4 (7.3 – 7.5)
Total COD (mgCOD/L)	607 (540 – 750)
Soluble COD (mgCOD/L)	360 (200-520)
Total Nitrogen (mgN/L)	720 (605-855)
NH ₄ -N (mgN/L)	650 (600-750)
Total Phosphorus (mgP/L)	53 (22-55)
PO ₄ -P (mgP/L)	39 (20 – 44)

- Total COD/ Total Nitrogen ratio \approx 1
- VFAs represent 5-10% of the soluble COD;
- $\circ~$ The rbCOD is les than 20% of the soluble COD.

Supported by the Horizon 2020 Framework Programme of the European Union

Enrichment of PHA storing biomass: S.C.E.P.P.H.A.R. cycle

Performance of the PHA storing biomass selection

From the day 40, the $Y_{PHA/VFA}$ gradually increased (from 0.22 to 0.51 gCOD_{PHA}/gCOD_{VFA}), reaching the better results when the CPS was used as C-source in the period II.2 (up to 0.65 gCOD_{PHA}/gCOD_{VFA}).

Supported by the Horizon 2020 Framework Programme of the European Union

Analyses of the microbial community

Link between process performance characteristics and microbial population

Significant increase of <u>Thauera</u> concentration from 3 ± 0 (Period I) to $58\pm11\%$ (Period II.2), according with the increase of the PHA storage yields at SRT of 7-10 days.

The increase of the $Y_{PHA/VFA}$ from 0.42 (with SRT 5 days) to 0.64 (with SRT 7-10) gCOD_{PHA}/gCOD_{VFAs} could be attributed to the presence of other type of organisms such as Paracoccus and Azoarcus.

Supported by the Horizon 2020 Framework Programme of the European Union

PHA accumulation

The addition of fermentation liquid from cellulosic sludge was controlled based on the registered **Oxygen Uptake Rate** (OUR)

- High PHA storage response in the first part of the test (Y_{PHA/VFA} = 0.42-0.48 gCOD/gCOD);
- Biomass growth and PHA storage are balanced in the second part of the test.

Supported by the Horizon 2020 Framework Programme of the European Union

UNIVERSITÀ

POLITECNICA

DELLE MARCHE

Conclusions: via-nitrite PHA production

- The fermentation of cellulosic primary sludge from sieved wastewater provides a suitable source of VFAs for the PHA production;
- Aerobic/Feast with Anoxic/Famine regime was coupled with the via-nitrite route to treat high nitrogenous anaerobic effluent;
- After 4 hours of accumulation, the maximal fraction of PHA obtained in the biomass was around 30% (gPHA/gTVS).
- Struvite recovery from cellulosic primary sludge could be a strategy to promote the PHA storage during the accumulation stage.
- The Sidestream S.C.E.P.P.H.A.R. is the SMARTech5 of the Horizon2020 Smart-Plant which will be scaled up at pilot scale (potential 0.5-0.8 kgPHA/d) within the WWTP of Carbonera (TV);

Supported by the Horizon 2020 Framework Programme of the European Union

Short Cut Enhanced Nutrient Abatement (Smartech 4a)

- Volatile Fatty Acids (VFAs) production from cellulosic primary sludge (CPS) by acidogenic fermentation at 37°C;
- Nitrogen and phosphorus removal via-nitrite in a Sequencing Batch Reactor (SBR);

Supported by the Horizon 2020 Framework Programme of the European Union

Enhanced via-nitrite BioP: Results 1/2

PAOs enrichment using fermented cellulosic primary sludge

- Effective enhanced bio-P removal process was achieved.
- The sPRR and the sPUR were stable at 3.7 and 4.7 mgP gVSS⁻¹h⁻¹ respectively.

Supported by the Horizon 2020 Framework Programme of the European Union

DELLE MARCHE

VFA for Enhanced via-nitrite BioP Conclusions

- The Short-Cut EBPR was validated at lab scale SBR using VFAs derived from the fermentation of cellulosic primary sludge for the treatment of anaerobic supernatant.
- The phosphorus concentration in the biomass cell achieved 57 mgP gTS⁻¹.
- FISH analyses showed that the presence of PAOs decreased from 50% to 20% when the short-cut EBPR was established, probably due to the increase of presence of GAOs.

Supported by the Horizon 2020 Framework Programme of the European Union

Thank you for your attention

WHAT COMES NEXT? Scale-up almost ready at the Carbonera WWTP: follow us on www.smart-plant.eu and Twitter @smart_plant_eu

Supported by the Horizon 2020 Framework Programme of the European Union

